UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS ESCUELA DE ESTUDIOS DE POSTGRADO

"COMPARACIÓN DE SATURACIÓN VENOSA CENTRAL DE OXIGENO: GASES VENOSOS VRS. MONITOREO CONTINUO DE SATURACIÓN"

LESLIE JUDITH PINEDA GALINDO

Tesis

Presentada ante las autoridades de la La Escuela de Estudios de Postgrado de la Facultad de Ciencias Médicas Maestría en Medicina Interna Para obtener el grado de Maestra en Ciencias en Medicina Interna

Enero 2013

Facultad de Ciencias Médicas

Jniversidad de San Carlos de Guatemala

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

LA FACULTAD DE CIENCIAS MÉDICAS

ESCUELA DE ESTUDIOS DE POSTGRADO

HACE CONSTAR OUE:

La Doctora:

Leslie Judith Pineda Galindo

Carné Universitario No.:

100016390

Ha presentado, para su EXAMEN PÚBLICO DE TESIS, previo a otorgar el grado de Maestro en Medicina Interna, el trabajo de tesis "Comparación de saturación venosa central de exígeno: Gases venosos vers. Monitoreo continuo de saturación".

Que fue asesorado:

Dr. Jorge Luis Ranero Meneses MSc.

Y revisado por:

Dr. Jorge Alexander Walter García MSc.

Quienes lo avalan y han firmado conformes, por lo que se emite, la ORDEN DE IMPRESIÓN para octubre 2012.

Guatemala, 10 de septiembre de 2012

Dr. Carlos Humberto Vargas Reyes MSc.

Director Escuela de Estudios de Postgrado Dr. Luit Alfredio Ruiz Cruz MSc.

Coordinator General
Programa de Maestrías y Especialidades

/lamo

Guatemala 10 de Agosto 2012.

Doctor(a)

Jorge Alexander Walter García

Docente Responsable

Maestría en Medicina Interna

Hospital General Enfermedades IGSS

Por este medio le envío el Informe Final de Tesis <u>"Comparación de saturación venosa central de oxígeno: Gases venosos vrs Monitoreo continuo de saturación</u>" perteneciente al (la) **Dr.(a) LESLIE JUDITH PINEDA GALINDO**, el cual ha sido revisado y APROBADO.

Sin otro particular, de usted deferentemente

"ID Y ENSEÑAD A TODOS"

R.(A) JORGELUIS RANERO MENESES. MSc

Medicina Interna - Terapia Intensiva

Docente Investigación Asesor del Trabajo de Tesis

Maestría en <u>Medicina</u> Interna

Instituto Guatemalteco de Seguridad Social

Guatemala 10 de Agosto 2012.

DR. ALEXANDER WALCER

Doctor(a)

Jorge Alexander Walter García

Docente Responsable

Maestría en Medicina Interna

Hospital General Enfermedades IGSS

Por este medio le envío el Informe Final de Tesis <u>"Comparación de saturación venosa central de oxígeno: Gases venosos vrs Monitoreo continuo de saturación</u> perteneciente al (la) **Dr.(a) LESLIE JUDITH PINEDA GALINDO**, el cual ha sido revisado y APROBADO.

Sin otro particular, de usted deferentemente

"ID Y ENSEÑAD A TODOS"

Medica

R.(A) JORGE/ALEXANDER WALTER GARCÍA . MSc

Medicina Interna

Docente Encargado – Revisor del Trabajo de Tesis

Maestría en Medicina Interna

Instituto Guatemalteco de Seguridad Social

Guatemala 10 de Agosto 2012.

Doctor(a) **Luis Alfredo Ruiz Cruz MSc**Coordinador General

Programa de Especialidades Médicas

Escuela de Estudios de Postgrado USAC

Por este medio le envío el Informe Final de Tesis <u>"Comparación de saturación venosa central de oxígeno: Gases venosos vrs Monitoreo Continuo de saturación</u>" perteneciente al (la) Dr.(a) LESLIE JUDITH PINEDA GALINDO, el cual ha sido revisado y APROBADO. Por los Doctores Jorge Luis Ranero Meneses y Jorge Alexander Walter García, como asesor y revisor respectivamente. Así como por mi persona como Docente Encargado de la Maestría en Medicina Interna del Instituto Guatemalteco de Seguridad Social.

Sin otro particular, de usted deferentemente

"ID Y ENSEÑAD A TODOS"

TOR ALEXANDER WALCE

COL 4927

EXANDER VALTER GARCÍA . MSc Medicina Interna

Docente Encargado – Maestria en Medicina Interna Instituto Guatemalteco de Seguridad Social

Dr. Ricardo Garcia Manzo

Col. 2,512

RESUMEN

La saturación venosa central de oxígeno (SvcO2) (Gold standard) evalúan de manera integral los determinantes de la relación aporte/consumo de oxígeno (DO2/VO2) y perfusión tisular. En los últimos años varios estudios han demostrado que la reanimación dirigida por metas, en la cual la SvcO2 es uno de los objetivos terapéuticos fundamentales, disminuye de manera significativa la morbimortalidad en enfermos de alto riesgo, al detectar y revertir los disparadores y efectos de la hipoxia tisular. *Metodología*: Estudio descriptivo, prospectivo y observacional, se incluyeron pacientes críticamente enfermos que ingresaron a la UTIA del HGEC de julio del 2008 a septiembre 2010 (n: 27), se documento la SVcO2 (gases venosos centrales) y se comparo con la saturación venosa continua (SVcontO2) tomada a través de un catéter de fibra óptica (Edward's) por medio del sistema de Vigileo, los mismos y otros parámetros para evaluar hemodinamia fueron medidos al ingreso, 6 , 12 y 24 horas. *Objetivos:* comparar la efectividad de la medición de SVcontO2. vrs SVcO2 en todo paciente críticamente enfermos que ingresa a UTIA del IGSS . Resultados: Al ingreso la comparación de SVcontO2. vrs SVcO2 p: 0.01, R: 0.88, CC:0.96; 6 horas p: 0.04, R de Pearson: 0.68 CC: 0.88; 12 horas: p 0.03 R de Pearson: 1, CC:0.86; 24 horas: p 0.05 R de Pearson: 1, CC:0.80, lo que valida la utilización de SVcontO2 en relación a SVcO2. Conclusión: La utilización de SVcontO2 es tan eficaz como la SVcO2, por lo que puede ser utilizada de manera confiable en pacientes críticamente enfermos.

ÍNDICE DE CONTENIDOS

		Página
l.	Introducción	1
II.	Antecedentes	5
III.	Objetivos	15
IV.	Materiales y Métodos	16
	4.1 Diseño del Estudio	16
	4.2 Unidad de Análisis	16
	4.3 Población y Muestra	16
	4.4 Criterios de Inclusión	17
	4.5 Definición de Variables y Operacionalizacion	17
	4.6 Técnicas, Procedimientos, Instrumento de datos	18
	4.7 Alcances y Limitaciones	19
	4.8 Análisis Estadístico	20
V.	Resultados	21
VI.	Discusión de Resultados y Análisis	23
VII.	Referencias Bibliográficas	26
/III.	Anexos	27
	8.1 Instrumento de Recolección de datos	28
	8.2Tablas	29
	8.3 Graficas	29
	8.4 Abreviaturas	37
IX	Permisos del Autor	38

ÍNDICE DE TABLAS

	Pagina
Tabla No. 1	28
Tabla No. 2	29
Tabla No. 3	29
Tabla No. 4	30
Tabla No. 5	30
Tabla No. 6	31
Tabla No. 7	32
Tabla No. 8	33
Tabla No. 9	33
Tabla No. 10	34
Tabla No. 11	35
Tabla No. 12	35
Tabla No. 13	36
Tabla No. 14	36

ÍNDICE DE GRAFICAS

	Pagina
Grafica No. 1	28

I. INTRODUCCIÓN

La esencia en el cuidado del paciente críticamente enfermo está sustentada en asegurar un adecuado aporte de oxígeno y nutrientes a las células con el fin de soportar un metabolismo aerobio. ⁽¹⁾Cuando el aporte de oxígeno hacia las células se encuentra limitado, la función normal de las mismas se ve afectada, y la muerte de éstas puede ocurrir. Por lo tanto mantener un adecuado aporte de oxígeno (DO₂) representa un invaluable objetivo terapéutico. ⁽⁴⁾ En el paciente en estado crítico, la resucitación cardiovascular se basó originalmente en datos clínicos como presión arterial, llenado capilar, temperatura de partes distales del cuerpo, diuresis, estado mental, etc. A estos datos se añadieron criterios de laboratorio y hemodinámicas como el déficit de base, las concentraciones de lactato sérico y las determinaciones de gasto cardíaco y aporte y consumo de O2 mediante catéteres pulmonares (CP).⁽¹⁾

En los últimos años han aparecido un número considerable de estudios clínicos aleatorios bien realizados, dirigidos por los Institutos Nacionales de Salud Norteamericanos, donde la utilización de CP no logró obtener ventajas, sobre la monitorización convencional en pacientes críticamente enfermos, por lo cual la monitorización con CP, ha disminuido. A lo largo de muchos años, en la medicina crítica, se ha buscado un marcador de resucitación que nos permitiera asegurar que ésta ha sido exitosa y completa (2) El estudio de Rivers y colaboradores, estiman que la utilización de la saturación venosa central (ScvO2), es un parámetro útil que detecta la presencia de resucitación subóptima, y que su utilización determina una mejor reanimación y menor morbimortalidad. (3)

Las indicaciones del monitoreo de la SvcO2 en la práctica clínica son: Sepsis grave y choque séptico, Cirugía mayor, Trauma grave, choque hemorrágico e Insuficiencia cardíaca. (3) Los laboratorios Eduardo, han desarrollado el sistema de **Vigileo**, el cual consta de un monitor un un sensor Flo Trac conectado a un catéter arterial radial o femoral o un catéter central de fibra óptica para el estudio de la

onda presión y (catéter de Edward's) por medio del cual se puede medir de manera continua la saturación venosa central de oxigeno. (2) Actualmente en Guatemala no se ha realizado ningún estudio que valide la medición de saturación venosa central de oxigeno comparando con monitoreo continuo de saturación venosa central utilizando el sistema de **Vigileo.**

Los objetivo general fue Comparar la efectividad de la medición de la saturación venosa continua con el (sistema de Vigileo) y la utilización de saturación venosa central de oxigeno (gases venosos centrales) en todos los pacientes críticamente enfermos que ingresan a UTIA del IGSS z. 9. Los objetivos específicos fueron identificar las patologías mas frecuentes que ameritan monitoreo hemodinamico invasivo, el grupo etareo mas frecuente de pacientes, y Vvlidar los resultados de la medición de saturación venosa continua en relación a gases venosos centrales.

Se realizo un estudio de tipo de estudio descriptivo, prospectivo y observacional, realizado en la unidad de terapia intensiva (UTIA) del Hospital general de enfermedades, del mes de julio del año 2008 a septiembre del año 2010, donde se incluyo a todo paciente que ingreso a esta unidad en el tiempo citado previamente Se incluye a todo paciente por encima de 17 años, afiliado, que ingreso a UTIA, con diagnostico de choque séptico, cardiogenico e hipovolemico, cirugías mayores y trauma grave. Se excluyeron a pacientes menores de 17 años y embarazadas, no afiliados a esta institución.

Para la recolección de datos se realizaron mediciones al ingreso (0 horas), 6 , 12 y 24 horas de parámetros para monitorización hemodinámica que incluyen presión venosa central, presión arterial media (PAM), lactato, ph, excreta urinaria, utilización de aminas vasoactivas, saturación venosa central de oxigeno(gases venosos) y saturación venosa continua de oxigeno (sistema de vigileo), los mismos anotados en la hoja de recolección de datos por el médico residente de la unidad de terapia intensiva del IGSS zona 9 en las fechas descrita previamente. Para la medición de la saturación venosa central se tomo una muestra de sangre

venosa del catéter central y se comparo contra la saturación venosa continua que era monitorizada a través del catéter venoso con fibra óptica (Edward's) con la ayuda del sistema de Vigileo, tomando en cuenta que la primera es el Gold Standard en el manejo de estos pacientes, se valoro el comportamiento de la saturación venosa continua.

Los datos obtenidos en el instrumento de recolección de datos se vaciaron en una hoja de datos, procesándose estos en el paquete estadístico SPSS 15 obteniendo frecuencias, porcentajes. La información obtenida se presento por medio de tablas y de gráficas de dispersión las cuales mostraron los resultados de la investigación

Se incluyeron un total de 27 pacientes que cumplieron con los criterios de inclusión. Al ingreso (0 horas) la media de la edad fue de 59 años, predominando el sexo masculino. Las patologías mas frecuentes son Choque séptico y choque cardiogenico patologías en las que ya ha sido documentado la utilización de saturación venosa central. También se documento a través del análisis estadístico que son similares los niveles de saturación venosa central (Gold Standard) y saturación venosa continua, apoyando la hipótesis planteada al inicio de a investigación, lo cual es significativo por el análisis prueba de X^2 de Pearson 0.01 lo que apoya la hipótesis planteada y R de person 0.88 que orienta a correlación positiva (directa) que indica que las variable se correlacionan, y como se puede observar en las graficas de dispersión que tanto la SVcontO2 y SVcO2 se correlacionan de manera positiva. A las 6 horas se documenta hallazgos parecidos al ingreso evidenciándose que los pacientes detectados como anormal en saturación venosa continua de oxigeno es similar a la saturación venosa central P 0.04 lo que apoya la hipótesis planteada y R de person 0.685 que orienta a correlación positiva (directa). A las 12 y 24 horas se evidencia que se cumple de manera similar lo planteado al ingreso y a las 6 horas, apoyando la teoría que la saturación venosa central continua medida a través del Vigileo puede ser validada la saturación venosa central de oxigeno, el cual es el Gold Standard en las patologías citadas previamente.

Todo lo anterior se puede documentar en las graficas de dispersión que demuestran la correlación de las dos variables en cuestión. Por lo expuesto anteriormente se considera que el presente es el inicio de una serie de investigaciones, que puedan contener un mayor muestra, para validar la utilización de saturación venosa continua a través del sistema de vigileo, ya que es un sistema novedoso, menos invasivo y con menos complicaciones que el catéter de arteria pulmonar, y desconocido aun en algunas unidades de terapia intensiva del país. Se consideran como limitantes el tamaño de la muestra y la dificultad de adquisición del material (catéter de Edward's y sistema de Vigileo)lo cual deberá ser tomado en cuenta en investigaciones futuras. La utilización de SVcontO2 es tan eficaz como la SVcO2, por lo que puede ser utilizada de manera confiable en pacientes críticamente enfermos.

II. ANTECEDENTES

La esencia en el cuidado del paciente críticamente enfermo está sustentada en asegurar un adecuado aporte de oxígeno y nutrientes a las células con el fin de soportar un metabolismo aerobio. (1) Cuando el aporte de oxígeno hacia las células se encuentra limitado, la función normal de las mismas se ve afectada, y la muerte de éstas puede ocurrir. Por lo tanto mantener un adecuado aporte de oxígeno (DO₂) representa un invaluable objetivo terapéutico. (4) En el paciente en estado crítico, la resucitación cardiovascular se basó originalmente en datos clínicos como presión arterial, llenado capilar, temperatura de partes distales del cuerpo, diuresis, estado mental, etc. A estos datos se añadieron criterios de laboratorio y hemodinámicas como el déficit de base, las concentraciones de lactato sérico y las determinaciones de gasto cardíaco y aporte y consumo de O2 mediante catéteres pulmonares (CP).(1) En los últimos años han aparecido un número considerable de estudios clínicos aleatorios bien realizados, dirigidos por los Institutos Nacionales de Salud Norteamericanos, donde la utilización de catéteres pulmonares no logró obtener ventajas, sobre la monitorización convencional en pacientes críticamente enfermos, por lo cual la monitorización con CP, ha disminuido. A lo largo de muchos años, en la medicina crítica, se ha buscado un marcador de resucitación que nos permitiera asegurar que ésta ha sido exitosa y completa.(2) Como se mencionó en el párrafo anterior los criterios derivados de la monitorización con catéteres pulmonares (Aporte y consumo de O2, PCP, índice cardíaco), no lograron demostrar una ventaja significativa. En el momento actual varios investigadores y clínicos en base a la evidencia actualmente disponible y en especial con apoyo del trabajo de Rivers y colaboradores, estiman que la utilización de la saturación venosa central (ScvO2), es un parámetro útil que detecta la presencia de resucitación subóptima, y que su utilización determina una mejor reanimación y menor morbimortalidad.(3)

El monitoreo de la ScvO2 a sido utilizado como objetivo hemodinámica en el manejo de la sepsis temprana el grupo de Rivers. Que demostró que el mantener SvcO2 arriba del 70%, además de otras variables disminuía la mortalidad en un 15%.(5) El monitoreo hemodinámica del paciente críticamente enfermo, con las variables utilizadas rutinariamente como son: la frecuencia cardíaca (FC), presión arterial (PANI), presión venosa central (PVC), diuresis (d), saturación arterial de oxígeno (SaO2) y capnografía (EtCO2) evalúan el estado cardiopulmonar general pero no la oxigenación, perfusión y consumo de oxígeno microcirculatorio. (1)

La medición de la SvO2 en la arteria pulmonar es una medida indirecta de oxigenación tisular. En enfermedades cardiopulmonares graves, choque séptico, choque cardiogénico y cirugía cardiovascular, el descenso de la SvO2 se asocia a mal pronóstico, por lo que su monitoreo continuo a través de catéteres pulmonares de fibra óptica se aconseja para dirigir las maniobras terapéuticas. El inconveniente de esta técnica es que requiere de colocación de un catéter en la arteria pulmonar con las complicaciones y costos que esto representa. Por este motivo en los últimos años se ha reemplazado por el monitoreo de la SvcO2, el cual es un método simple que evalúa el aporte global de oxígeno en diferentes situaciones clínicas.(4) En un pequeño estudio clínico se demostró que el mantener SvcO2 en rango normal era marcador de buen pronóstico en pacientes con trauma múltiple. Gattinoni y colaboradores no encontraron diferencia en la morbilidad y mortalidad en un gran ensayo multicéntrico de pacientes graves en el que el objetivo era mantener SvO2 > 70%. Sin embargo, en este estudio el grupo de enfermos fue muy heterogéneo y el objetivo se consiguió únicamente en un tercio de los enfermos, lo que representa, la principal debilidad de este ensayo clínico.

Polonen y colaboradores desarrollaron un protocolo en pacientes postoperados de revascularización coronaria, cuyo objetivo primario era mantener SvcO2 > del 70% y lactato menor de 2 mmol/l. En el grupo control no se mantuvo el objetivo terapéutico y presentó una mayor morbimortalidad y estancia hospitalaria. (10)

Las indicaciones del monitoreo de la SvcO2 en la práctica clínica son:

- 1. Sepsis grave y choque séptico
- 2. Cirugía mayor
- 3. Trauma grave y choque hemorrágico
- 4. Insuficiencia cardíaca(3)
- 1. Sepsis grave y choque séptico: En la sepsis la hipoxia y la hipoperfusión tisular son frecuentes y el común denominador de la disfunción orgánica múltiple. Como se comentó previamente, un esquema terapéutico que tiene como objetivo fundamental mantener SvcO2 > 70% disminuye de manera significativa la morbimortalidad. En el estudio de Varpula en el que se valoró el impacto de diferentes variables hemodinámicas en la mortalidad a 30 días, se demostró que el mantener en las primeras seis horas de su ingreso a la UTI una presión arterial media por arriba de 65 mmHg, SvcO2 > 70%, lactato < 2 mmol/ l, eran los mejores predictores de disminución de la mortalidad. La campaña para incrementar la sobrevida en sepsis ha recomendado la reanimación temprana dirigida por metas como uno de los determinantes más importantes que impactan sobre la mortalidad de los pacientes con sepsis y choque séptico(1)

Las alteraciones del transporte de oxígeno por anomalías de la autorregulación están relacionadas con la respuesta orgánica a la sepsis. El empeoramiento séptico, que disminuye la extracción de oxígeno e impide al organismo utilizarlo, aumenta la saturación venosa de ese elemento y reduce su diferencia arteriovenosa, con el consiguiente incremento del gasto cardíaco y la progresiva evolución hacia la insuficiencia respiratoria aguda, la producción de una grave acidosis con fallos orgánicos y finalmente la muerte.

El organismo tiene una respuesta tem prana y otra tardía a la sepsis, la primera de las cuales es una consecuencia vital de adaptación, constituida por un estado hiperdinámico donde se incrementa el consumo de oxígeno y existe una capacidad normal para extraerlo de las células, así como también para utilizarlo. 6,

7 A medida que la sepsis empeora, el transporte de oxígeno se modifica y con ello se dificulta sustancialmente el metabolismo celular, 8 pues tanto en la llamada fase hiperdinámica como en la más avanzada (la hipodinámica), la oxigenación no cumple su ciclo por anomalías que ocurren en la distribución del flujo sanguíneo a diferentes órganos específicos y en el nivel microcirculatorio, atribuibles a sepsis. Al romperse la autorregulación del flujo sanguíneo tisular, el consumo de oxígeno periférico, que es independiente del suministro, deviene entonces dependiente de éste y se altera por la referida mala distribución, lo cual se produce en una situación hipermetabólica donde los requerimientos de oxígeno pueden elevarse hasta 50 %, 11 – 12 mientras que su extracción, que ya venía reduciéndose, disminuye aún mucho más 2, 3 hasta finalizar en la caída del consumo, lo que trae como consecuencia la acidosis, cuyo aumento afecta severamente a toda la economía. 13 La caída del consumo de oxígeno se expresa a través de la disminución de la diferencia arteriovenosa de éste, así como del descenso del pH sanguíneo y del correspondiente a la mucosa gastroduode-nal. 8, 9, 11, 14 - 16 A lo anterior contribuye no solo la derivación funcional como resultado de la pérdida de áreas capilares de intercambio, sino también otras consecuencias de la sepsis grave como la microembolización, el daño hístico tóxico, la lesión endotelial, el edema celular, la inhibición de la respiración mitocondrial y la desviación de la curva de disociación de la hemoglobina a la izquierda por la transfusión sanguínea, la alcalosis y la hipofosfatemia; todos ellos favorecedores de la insuficiencia celular para emplear el oxígeno y del fallo metabólico consecuente.

También existen otras condiciones que propician la inadecuada extracción de oxígeno de forma simultánea o sucesiva, a saber: un aumento en el metabolismo oxidativo mitocondrial, la anaerobiosis, el desacoplamiento de la fosforilación oxidativa y el uso del oxígeno extramitocondrial. 8, 11 Todas estas situaciones que impiden a los tejidos utilizar bien el oxígeno o no hacerlo, son causantes de un valor más alto en la saturación venosa de dicho elemento. 1, 2,5 La poca extracción de oxígeno en esta fase genera que el gasto cardíaco se acreciente proporcionalmente para mantener el consumo, aunque esa maniobra no siempre

mejora la mala distribución del flujo sanguíneo o el gasto no logra elevarse hasta el nivel necesario para permitir una adecuada perfusión tisular. 11, 12, 21, 23 Durante todo ese proceso, el fallo respiratorio agudo viene a constituir un factor crítico en la ampliación de las alteraciones de la oxigenación en la sepsis grave, ocasionado por las lesiones de las estructuras pulmonares 6, 24 comúnmente a las 12-24 horas posteriores al inicio de ésta, con la consiguiente aparición de una moderada hipoxemia.

En cuanto al consumo de oxígeno, aún no se ha definido si su incremento por el ascenso en el transporte a niveles que rebasan los límites normales, implica "deuda" del gas aunque aquél se considera indicador de ella- 21 o constituye un marcador del daño de la autorregulación metabólica. 6 El consumo de oxígeno patológico que depende del suministro y se observa en la sepsis con insuficiencia respiratoria aguda, suele relacionarse linealmente con el transporte por encima de lo normal y tener un cociente de extracción relativamente estable a diferentes niveles del transporte, con tendencia a incrementar el consumo hasta alcanzar valores que superen los límites establecidos según aumenta el suministro y una posible limitación alcanzada en la máxima extracción, cuando la entrega se reduce considerablemente, 6 en cuya situación los requerimientos de oxígeno pueden ser mucho más eleva dos.

El empeoramiento progresivo de la circulación trae consigo un mayor deterioro en la extracción y el consumo, que se manifiesta a través de una severa caída del gasto cardíaco por una notable disminución del contenido venoso central de oxígeno a menos de 50 % y de la saturación venosa a ese nivel, lo cual se expresa mediante el aumento de su diferencia arteriovenosa, 4 así como de la venoarterial de anhídrido carbónico; 3 a todo ello se asocian alteraciones hepáticas capaces de conducir a la insuficiencia grave, al incremento del trabajo miocárdico sin la eficacia necesaria y a la intensificación de las resistencias vasculares pulmonares y sistémicas. 5 La consecuencia inevitable es la elevación de la degradación de los nucleótidos ricos en energía, que propician el aumento

de la producción de hidrogeniones en tal cuantía, que interfiere las acciones enzimáticas de los tejidos, daña sus estructuras y causa disfunción, fallos orgánicos y la muerte. 3 – 5 La sepsis grave altera severamente la oxigenación tisular y esto a su vez empeora el cuadro séptico y conduce a la defunción por insuficiencias orgánicas.

- 2. Cirugía mayor: La terapia dirigida por metas se ha usado en el perioperatorio de enfermos sometidos a cirugía mayor, con reducción significativa en la morbimortalidad. Pearse demostró en dos estudios que se puede aplicar en el postoperatorio de cirugía mayor en la Unidad de Cuidados Intensivos y que impacta en la mortalidad de los enfermos. Se confirma la tendencia positiva del monitoreo con SvcO2 en el manejo de este subgrupo de enfermos, a diferencia del gasto cardíaco y del DO2 que no tuvieron correlación con la evolución de los enfermos. La SvcO2 es factor de riesgo independiente de complicaciones(16-19).
- 3. Trauma grave y choque hemorrágico: El manejo inicial de los enfermos con trauma grave y hemorragia es la reanimación y en caso necesario la intervención quirúrgica temprana. Si las metas de manejo se basan en la presión arterial, frecuencia cardíaca y presión venosa central, el 50% de los enfermos reanimados bajo estos criterios estarán hipoperfundidos y con SvcO2 por debajo de 70%. Aunque al momento no existe estudio que haya validado a la SvcO2 para guiar el manejo hemodinámico en pacientes politraumatizados existe evidencia científica de que este parámetro llena todas las expectativas para orientar el manejo. En los pacientes con trauma SvcO2 por debajo del 65% es predictor de transfusión de paquete eritrocitario (20,21).
- 4. **Insuficiencia cardíaca:** En insuficiencia cardíaca la SvcO2 correlaciona con el estado hemodinámico, es predoctora de evolución y sirve para guiar el manejo. En pacientes con infarto agudo de miocardio SvcO2 por debajo del 60% correlaciona con choque cardiogénico. En paro cardíaco y durante reanimación cardiopulmonar la SvcO2 es útil para validar la efectividad de las maniobras de reanimación.

Durante el paro cardíaco el flujo sanguíneo se interrumpe y la sangre venosa central se desatura masivamente, llegando a presentar valores menores de 20%, la maniobra de compresión torácica efectiva se traduce en saturaciones que rebasan el 40%, cuando se restaura la circulación espontánea la saturación se normaliza En el período post-parocardiorrespiratorio SvcO2 por arriba del 80% es predictor de fase hipermetabólica y mal pronóstico(2-6)

Ya mencionado el estudio de Rivers en pacientes con sepsis grave o choque séptico(2) donde se demostró que la resucitación temprana, guiado con ScvO2 en adición a la PVC, PAM y diuresis horaria, disminuyó la mortalidad de 46 a 30%.

El grupo monitorizado con ScvO2 utilizó más líquidos, hemoderivados durante las primeras 6 horas. Sin embargo, Gattinoni(4) reporta que la terapia guiada por objetivos en base a ScvO2 mayor a 70% en tiempo de 5 días no disminuyó la mortalidad. Varpula valora en forma retrospectiva pacientes con choque séptico, encontrando que en las primeras 6 horas que las variables más importantes para la sobreviva son la presión arterial y los niveles de lactato y que la SvO2 la PVC y PAM son mejores predoctores en las 48 horas. En hecho que sea un estudio retrospectivo no modifica el valor del estudio.

Desde los inicios de la utilización del catéter pulmonar (CP), existió el interés en demostrar que la terapia guiada por objetivos terapéuticos, (basada primordialmente en objetivos de DO2 y VO2), tanto en el preoperatorio de los pacientes de alto riesgo, como en el postoperatorio de cirugías o pacientes en choque séptico mejoraría la morbimortalidad. En esta área existió una enorme discusión, con un sinnúmero de publicaciones en ambos sentidos de los resultados positivos o negativos(5,6).

Pearse(7) publicó recientemente los resultados de un estudio con objetivos dirigidos a lograr una DO2 de 600 ml/ min/m2, las complicaciones fueron menores en el grupo de objetivo hemodinámicas, sin embargo la mortalidad fue similar. La ScvO2 se asoció en forma independiente con las complicaciones. El mejor punto

de cohorte de SvcO2 en sus pacientes resultó ser 64%, sin embargo hay que hacer notar que la especificidad fue de 56% y sensibilidad de 67%, es importante mencionar que los pacientes que mantuvieron ScvO2 arriba de 75% no presentaron complicaciones postoperatorias, el mismo estudio resalta que las alteraciones de DO2, VO2 y ScvO2 ocurrieron en presencia de estabilidad de otras variables fisiológicas y químicas usualmente medidas. Todo lo anteriormente mencionado, nos debe hacer pensar que para determinar la utilidad de la ScvO2, se deben empezar a realizar estudios multicéntricos con patologías y objetivos terapéuticos bien determinados, con la potencia estadística suficiente, para que en esta ocasión no tardemos como sucedió con el CP, 25 años en determinarla utilidad de los catéteres centrales con determinación de ScvO2 continuo. Además nos deberemos de contestar si la medición intermitente de la ScvO2 es igual de efectiva como la medición continua con los catéteres de fibra óptica.

Los laboratorios Eduardo, han desarrollado esta tecnología, que aunado a la inferencia matemática del volumen latido a base de la diferencia de pulso de un catéter arterial, determina tanto la ScvO2 y el gasto cardíaco probable. Este sistema de monitorización se conoce comercialmente como **Vigileo** (MR). Aunque habitualmente se considera la tecnica de referencia para medir gasto cardiaco la colocacion de cateter de Swan Ganz se han introducido en la practica sistemas de menor invasividad como el Sistema PiCCO, sistema Vigileo, sitema Nico.

Sistema Vigielo:

El sistema Vigileo consta de un monitor un un sensor Flo Trac conectado a un cateter arterial radial o femoral para el estudio de la onda de presion. El sensor Flo Trac valora y calcula la presion del pulso arterial siendo esta directamente proporcional al volumen sitolico. Dicho sensor analliza y calcula las variaciones de la morfología de la onda de la presion arterial, siendo proporcional al cambio de volumen sitolico. Con los primeros parámetros especificos del paciente según el principo de Langewouters: edad, sexo, altura y peso se determina la complianza

del lecho vascular. Estas variables especificas proporcionan la linea de base para el calculo del efecto de la complianza en el flujo. La presion del pulso , la diferencia entre la presion sistolica y diastolita es proporcional al flujo. El calculo de la pulsatilidad entre la presion sistolica y diastolita es calculada por un algoritmo cada 20 segundos. Los datos de las modificaciones de la curva de presion medidos por el sensor son registrados e interpretados por el monitor, el cual utiliza la totalidad de la curva arterial para el analisis de la pulsatilidad , con el objetivos de dar una medicion continua del gasto cardiaco. El efecto de los cambios de la resistencia periferica en teimpo realce incluye en el calculo del gasto cardiaco por el analisis de los elementos claves de la curva de presion (ej. Cambiasen la presion arterial media, tiempo desde el inicio al final del pulso, distribución de la presión a lo largo de la curva del pulso). La frecuencia cardiaca es medida directamente de la señal pulsatil obtenida por el sensor Fio Trac.

Proporciona una monitorización hemodinámica completa, aportando parámetros continuos de Volumen Diastólico Final (VOF),Fracción de Eyección (FE), resistencia Vascular Sistémica (RVS),Volumen Sistólico (SV),Gasto Cardiaco(GC), saturación venosa central mixta de oxigeno(SVO2), Saturacion venosa central de oxigeno (SCVO2), Saturacion venosa yugular de oxigeno (SVJO2), pantalla de Modo STAT muestra tendencia hemodinámica minuto a minuto,pantalla de Perfil Cardiaco proporciona un cuadro exhaustivo del rendimiento hemodinámico.

La UTIA del IGSS es considerada la mas grande de Guatemala, un promedio de 30 pacientes son ingresados a esta unidad. Es una unidad de cuidado critico que atiende a paciente de diversas patologías, incluyendo patologías quirúrgicas y gineco-obstetricas, medicas, etc. La saturación venosa central de oxígeno (SvcO2) y la saturación venosa continua de oxigeno, son variables de gran trascendencia debido a que evalúan de manera integral los determinantes de la relación aporte/consumo de oxígeno (DO2/VO2) y perfusión tisular. En los últimos años varios estudios han demostrado que la reanimación dirigida por metas, en la cual la SvcO2 es uno de los objetivos terapéuticos fundamentales, disminuye de

manera significativa la morbimortalidad en enfermos de alto riesgo, al detectar y revertir los disparadores y efectos de la hipoxia tisular. Por lo expuesto previamente la importancia de comparar dos sistemas que se utilizan para inferir de manera indirecta gasto cardiaco en la población a estudio, teniendo de manera continua el monitoreo de saturación venosa central a través de la utilización de catéter de Edwards con el sistema de vigileo y atraves de esta comparación validar la utilización de la misma. Actualmente en Guatemala no existe ningún estudio que evalué valide la utilización de la saturación venosa central de oxigeno (gases venosos) vrs. monitoreo continuo de saturación utilizando el sistema de VIGILEO.

III. OBJETIVO 3.1 OBJETIVO GENERAL

Comparar la efectividad de la medición de la saturación venosa continua con el (sistema de Vigileo) y la utilización de saturación venosa central de oxigeno (gases venosos centrales) en todos los pacientes críticamente enfermos que ingresan a UTIA del IGSS z. 9.

3.2 OBJETIVOS ESPECÍFICOS

- 3.2.1 Identificar las patologías más frecuentes que ameritan monitoreo Hemodinámicao invasivo con utilización de Saturación venosa central y saturación venosa continua.
- 3.2.2 Analizar el grupo etareo mas frecuente de pacientes que ingresan a la UTIA del IGSS zona 9 con patologías que ameritan monitoreo hemodinámica invasivo .
- 3.2.3 Validar los resultados de la medición de saturación venosa continua vrs. utilización de gases venosos centrales en el monitoreo hemodinámica de pacientes que ingresan a UTIA.

IV. MATERIAL Y MÉTODO

4.1 Diseño del estudio.

Se realizo un estudio de tipo de estudio descriptivo, prospectivo y observacional, realizado en la unidad de terapia intensiva (UTIA) del Instituto Guatemalteco de Seguridad social zona 9, del mes de julio del año 2008 a septiembre del año 2010, donde se incluyo a todo paciente que ingreso a esta unidad en el tiempo citado previamente.

4.2 Unidad de análisis

Todo paciente que ingreso a la UTIA que cumplió con los criterios de inclusión.

4.3 Población y muestra.

Todo paciente que ingresa a UTIA del IGSS Z. 9

4.4 Criterios de inclusión

Todo paciente mayor de 17 años, afiliado, con diagnostico de choque séptico, cardiogenico e hipovolemico, cirugías mayores y trauma grave.

4.5 Criterios de exclusión

Se excluyeron a pacientes menores de 17 años y embarazadas, no afiliados a esta institución.

4.6 Procedimientos:

Para la recolección de datos se realizaron mediciones al ingreso (0 horas), 6 , 12 y 24 horas de parámetros para monitorización hemodinámica que incluyen presión venosa central, presión arterial media (PAM), lactato, ph, excreta urinaria, utilización de aminas vasoactivas, saturación venosa central de oxigeno(gases venosos) y saturación venosa continua de oxigeno (sistema de vigileo), los mismos anotados en la hoja de recolección de datos por el médico residente de la unidad de terapia intensiva del IGSS zona 9 en las fechas descrita previamente. Las dificultades encontradas fue la falta de disponibilidad de los catéteres de Edward's en la unidad. Para la medición de la saturación venosa central se tomo una muetra de sangre venosa del catéter central y se comparo contra la saturación venosa continua que era monitorizada a través del catéter venoso centra con fibra óptica (Edward's) con la ayuda del sistema de Vigileo, tomando en cuenta que la primera es el Gold Standard en el manejo de estos pacientes, se valoro el comportamiento de la saturación venosa continua.

4.8 Definición de variables y operacionalizacion

Variable	Definición	Definición operacional	Tipo de	Escala de	Dimensiones
	conceptual		variable	medición	
Edad	Cantidad de años	Número de años	Cuantitativa	razón	años
	cumplidos a la	cumplidos del			
	fecha de	pacientes al momento			
	aplicación del	del estudio			
	estudio				
Sexo	Constitución	Número de	Cualitativa	Nominal	Masculino
	orgánica que	hombres/mujeres		dicotómica	
	distingue de	incluidos en el estudio			Femenino
	hombre o mujer				
Presión	Presión arterial	Rango de presión	Cuantitativa	Razón	mmHg
arterial	media a nivel del	arterial media al			(milímetros de
media (PAM)	sistema arterial,	ingreso, 6, 12 y 24			mercurio)
	es igual a	horas			
	PAS+2PAD/3				
Saturación	Saturación	Valor de saturación	Cuantitativa	Razón	Porcentaje (%)
venosa	venosa de	venosa central de			
central de	oxigeno a nivel	oxigeno a nivel de			
oxigeno	de vena cava	vena cava superior			
(SVC)	superior				
Saturacion	Saturacion	Valor de saturación	Cuantitativa	Razón	Porcentaje (%)
venosa	venosa continua	venosa continua de			
continua de	de oxigeno a	oxigeno a nivel de			
oxigeno	nivel de cava	cava superior			
(SVcont)	sueperior				
Presión	Presión venosa a	Valor de presión	Cuantitativa	Razon	mmHg
venosa	nivel de cava	venosa a nivel de			
central	superior	cava superior			
(PVC)				_	

Frecuencia	frecuencia con	Valor de frecuencia	cuantitativa	Razón	Latidos por
cardiaca	que late el	con que late el			minuto
	corazón	corazón			
Lactato	Parámetro que	Valor que evalúa el	Cuantitativa	Razón	Mmol/litro
	evalúa perfusión	nivel de perfusión			
	tisular	tisular			
Excreta	Cantidad de orina	Valor de orina en una	Cuantitativa	Razon	ml/hora
urinaria /hora	por hora	hora			
Ph	Concentración de	Valos de	Cuantitativa	Razón	
	hidrogeniones en	concentración de			
	un medio	hidrogeniones en un			
		medio			
Bicarbonato	Concentración de	Valor de	Cuantitativa	Razón	Mmol/litro
(HCO3-)	bases en un	concentración de			
	medio	bases en un medio			
Déficit de	Déficit de bases	Valor de déficit de	Cuantitativa	Razón	Mmol/litro
base (DB)	en un medio	base en un medio			
Aminas	Utilización de	Utilización o no de	Nominal	Dicotomica	Si /no
vasoactivas	aminas	aminas vasoactivas			
	vasoactivas				
	(DOPA,				
	nofeprinefrina				
	dobutamina)				
Ventilación	ventilación	Utilización de	Nominal	Dicotomica	Si /no
mecánica	mecánica	ventilación mecánica			

4.9 Técnicas, procedimientos e instrumentos a utilizar

Autorización del hospital

Se explico a las autoridades hospitalarias correspondientes, Jefatura de Medicina Interna y a los encargados docentes del Programa de Investigación y del Postgrado de Medicina Interna de autorizar la investigación luego ya con la autorización de las autoridades correspondientes se realización el trabajo de campo.

Procedimiento

Se obtuvo información por medio de un instrumento de recolección de datos, el cual fue llenado con ayuda de médicos residentes que rotan por el área de UTIA del HGEC del Instituto Guatemalteco de Seguridad Social.

Instrumento de recolección de datos

Ver anexo 1

Aspectos éticos de la Investigación

Valor social o científico

La información obtenida nos ayuda a obtener beneficios a través de la utilización del sistema de Vigileo por medio de la medición de saturación venosa continua de oxigeno, ya que los datos encontrados a través del presente no ayudan a investigaicones futuras para un mejor manejo del paciente críticamente enfermo.

Validez científica

El presente es un estudio, el cual cumple con los principios y métodos científicos aceptados.

Selección equitativa de los sujetos

Se selecciono a todo paciente que ingresa a UTIA que cumpla con los criterios de inclusión.

Razón de riesgo/beneficio

No existieron riesgos en la realización de esta investigación para los participantes. Los beneficios que se obtendrán de la investigación se reflejarán en la propuesta de cambios encaminados al mejoramiento para una práctica clínica encaminada a mejorar la salud y calidad de vida de la población.

Evaluación independiente

El investigador de este trabajo de investigación declara no tener ningún conflicto de interés en la realización del mismo, ya sea económica, intelectual o de otra índole.

4.10 ANÁLISIS ESTADÍSTICO

Los datos obtenidos en el instrumento de recolección de datos se vaciaron en una hoja de datos, procesándose estos en el paquete estadístico SPSS 15 obteniendo frecuencias y porcentajes. Utilizando tablas de contingencia para variables nominales. Se calculó únicamente la incidencia acumulada debido a datos incompletos en la base de datos. Y se utilizo Ji- cuadrado

V. RESULTADOS

Cumplieron con los criterios de inclusión 17 pacientes.

Análisis estadístico:

En la tabla 1 se observa los datos al ingreso de los 17 pacientes, con una media de 50.41 años para la edad, con datos de acidosis metabólica e hiperlactatemia asociado a hipotensión arterial. En la figura 1 se observa las patologías mas frecuentes al ingreso (0 horas) de pacientes a UTIA siendo la mas frecuente choque séptico y cardiogenico.

Al ingreso (0 horas) se realizo medición de saturación venosa central de oxigeno y saturación venosa continua de oxigeno (tabla No. 2). Se puede observar que la cantidad de pacientes detectados como anormal en saturación venosa continua de oxigeno es similar a la saturación venosa central (table No. 3); prueba de X^2 de Pearson 0.01 lo que apoya la hipótesis planteada (tabla No. 4) y R de person 0.88 que orienta a correlación positiva (directa) (table No.5).

A las 6 horas del ingreso se realizo medición de saturación venosa central de oxigeno y saturación venosa continua de oxigeno se puede observar que la cantidad de pacientes detectados como anormal en saturación venosa continua de oxigeno es similar a la saturación venosa central (table No. 6); prueba de X^2 de Pearson 0.04 lo que apoya la hipótesis planteada (tabla No. 7) y R de person 0.685 que orienta a correlación positiva (directa) (table No.8).

A las 12 horas del ingreso se realizo medición de saturación venosa central de oxigeno y saturación venosa continua de oxigeno se puede observar que la cantidad de pacientes detectados como anormal en saturación venosa continua de oxigeno es similar a la saturación venosa central (tabla No. 9); prueba de X^2 de Pearson 0.03 lo que apoya la hipótesis planteada (tabla No.10) y R de person 1 que orienta a correlación positiva (directa) (tabla No.11).

A las 24 horas del ingreso se realizo medición de saturación venosa central de oxigeno y saturación venosa continua de oxigeno se puede observar que la cantidad de pacientes detectados como anormal en saturación venosa continua de oxigeno es similar a la saturación venosa central (table No. 12); prueba de X^2 de Pearson 0.05 lo que apoya la hipótesis planteada (tabla No. 13) y R de person 1 que orienta a correlación positiva (directa) (table No.14)

VI DISCUSIÓN Y ANÁLISIS

La medición de la saturación venosa central es un parámetro frecuentemente utilizado en el monitoreo invasivo hemodinámica, pudiendo inferir a través de este el aporte y consumo de oxigeno y de manera indirecta gasto cardiaco, mediante una manera menos invasiva que la utilización de catéter de arteria pulmonar. Ya se ha documentado en estudios previos que mantener o llegar a meta la saturación venosa central disminuye morbimortalidad. Tomando como base los datos previos y teniendo acceso a un sistema que informa la saturación venosa continua por medio de un catéter de fibra óptica (Edward's) (sistema de vigileo), se inicio la recolección de datos en las fechas expuestas previamente, haciendo medición de saturación venosa central y continua de oxigeno, además de otros parámetros al ingreso (0horas) , 6 , 12 y 24 horas, obteniéndose los siguientes resultados.

Al ingreso (0 horas) la media de la edad fue de 59 años, predominando el sexo masculino. Las patologías mas frecuentes son Choque séptico y choque cardiogenico patologías en las que ya ha sido documentado la utilización de saturación venosa central. (grafica 1). También se documento a través del análisis estadístico que son similares los niveles de saturación venosa central (Gold Standard) y saturación venosa continua, apoyando la hipótesis planteada al inicio de a investigación, lo cual es significativo por el análisis prueba de χ^2 de Pearson 0.01 lo que apoya la hipótesis planteada (tabla No. 4) y R de person 0.88 que orienta a correlación positiva (directa) (table No.5) lo que indica que las variable se correlacionan.

A las 6 horas se documenta hallazgos parecidos al ingreso evidenciándose que los pacientes detectados como anormal en saturación venosa continua de oxigeno es similar a la saturación venosa central (table No. 6); prueba de X^2 de Pearson

0.05 lo que apoya la hipótesis planteada (tabla No. 7) y R de person 0.685 que orienta a correlación positiva (directa) (table No.8).

A las 12 y 24 horas se evidencia que se cumple de manera similar lo planteado al ingreso y a las 6 horas, apoyando la teoría que la saturación venosa central continua medida a través del Vigileo puede ser validada la saturación venosa central de oxigeno, el cual es el Gold Standard en las patologías citadas previamente.

Concluyendo la media del grupo atareo mas afectado es de 59 años. Las patologías más frecuentes que ameritan la utilización de monitoreo hemodinamico invasivo con utilización de saturación venosa central o continua en UTIA son choque séptico y cardiogenico. La medición de saturación venosa continua de oxigeno (sistema de Vigileo) es igual de eficaz que la medición de saturación venosa central (gases venosos) en pacientes críticamente enfermos que ingresan a UTIA del IGSS zona 9.

Se recomienda impartir capacitaciones para médicos residentes para la utilización de nuevos sistemas de monitoreo hemodinámica, como es el sistema de Vigileo. A través de las autoridades correspondientes solicitar la compra de equipo para utilización de este sistema. Capacitar al personal de enfermería sobre la utilización y el cuidado del mismo para un manejo integral. Realizar más investigaciones para validar los distintos parámetros que aporta este sistema de forma menos invasiva que un catéter de arteria pulmonar.

Implicaciones

Por lo expuesto anteriormente se considera que el presente es el inicio de una serie de investigaciones, que puedan contener un mayor número de pacientes, para validar la utilización de saturación venosa continua a través del sistema de vigileo, ya que es un sistema novedoso, menos invasivo y con menos complicaciones que el catéter de arteria pulmonar, y desconocido aun para la mayor parte de médicos en Guatemala.

Limitaciones

Se consideran como limitantes el tiempo y la dificultad de adquisición del material (catéter de Edward's) lo cual deberá ser tomado en cuenta en investigaciones futuras.

VII BIBLIOGRAFIA

- Carrillo R, et al. . "SATURACION VENOSA CENTRAL, CONCEPTOS ACTUALES" . Articulo de Revision. Medigraphic Arthemisa. Vol. 30 no. 3 . México Julio a septiembre 2007. P. 165-172. Editorial mexicana.
- Carvajal C. "MONITORIZACION NO INVASIVA DEL GASTO CARDIACO"
 Sociedad de Anestiosiologia de chile. Vol. 35. diciembre 2006. pp. 130-142.
- Jardines A, "ALTERACION DE OXIGENACION EN SEPSIS SEVERA".
 MEDISAN, México 2001, 15 (1), pp. 58-56
- Portella J. M. et al "APLICACIÓN DE SATURACION VENOSA CENTRAL Y MIXTA" Medigraphic, Arthemisa, vol. 30 sup. 1 abril a junio 2007, México. pp, 355-356.
 - Reinhart K. Et al. "CONTINUOS CENTRAL VENOUS AND PULMONARY ARTERY OXYGEN STURATION MONITORIN IN TE CRITICALLY ILL". Intensive Care Med 30: 1572-1578, 2004.

VIII ANEXOS

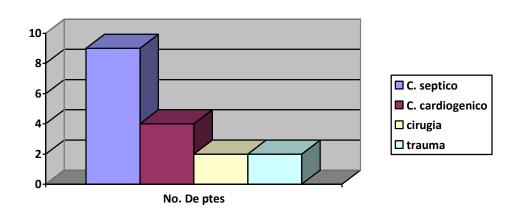
1. Hoja de recolección de datos

Nombre	edad	diagnostico

VARIABLE	0 H.	6Н.	12H.	24H.
T°				
FC				
PVC				
PAM				
SvcO2				
SvcO2 VIGILEO				
Lactato				
Déficit de base				
Ph				
Hto.				
Liquidos totales				
Transfusiones				
Vasopresores				
Inotropicos				
Ventilación				
Swan Ganz				

Tabla No. 1

Media y desviación típica de pacientes críticamente enfermos al ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010


Variable	No.	Media	Desv. típ.
Edad	17	59.41	10.44
FC	17	95.47	14.244
PVC	17	6.94	6.750
PAM	17	66.76	8.577
Ph	17	7.2253	.14578
Lactato	17	5.11	2.432
Bicarb	17	14.59	2.425
DB	17	-6.88	3.295

Fuente: hoja de recolección de datos

Figura No. 1

Diagnósticos de pacientes críticamente enfermos al ingreso a UTIA del hospital

General de Enfermedad de julio 2008 a septiembre 2010

<u>Tabla No. 2</u>

Porcentaje de pacientes críticamente enfermos al ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

		Casos						
	Vál	idos	Perd	didos	To	otal		
	N	N Porcentaj N Porcenta		Porcentaj	N	Porcentaj		
		е		е		е		
SVC0a *	17	100.0%	0	.0%	17	100.0%		
SVCONT0a								

Fuente: hoja de recolección de datos

Tabla No. 3

Saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermos al ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

			SVCC	NT0a	Total
			1	2	
SVC0a	1	Recuento	10	1	11
		% de SVC0a	90.9%	9.1%	100.0%
		% de SVCONT0a	100.0%	14.3%	64.7%
2		Recuento	0	6	6
		% de SVC0a	.0%	100.0%	100.0%
		% de SVCONT0a	.0%	85.7%	35.3%
Total		Recuento	10	7	17
		% de SVC0a	58.8%	41.2%	100.0%
		% de SVCONT0a	100.0%	100.0%	100.0%

Tabla No. 4

Prueba de *Xi* 2 comparando saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermos al ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

	Valor	Gl	Sig.	Sig.	Sig.
			asintótica	exacta	exacta
			(bilateral)	(bilateral)	(unilateral
)
Chi-cuadrado de	13.247(1	.000		
Pearson	b)				
Corrección por	9.759	1	.002		
continuidad(a)					
Razón de	16.333	1	.000		
verosimilitudes					
Estadístico exacto de				.001	.001
Fisher					
Asociación lineal por	12.468	1	.000		
lineal					
N de casos válidos	17				

a Calculado sólo para una tabla de 2x2.

b 3 casillas (75.0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 2.47.

Tabla No. 5

Medidas simétricas en pacientes críticamente enfermos al ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

		Valor	Error típ.	Т	Sig.
			asint.(a)	aproximada	aproximad
				(b)	а
Intervalo por	R de Pearson	.883	.107	7.276	.000(c)
intervalo					
Ordinal por	Correlación de	.883	.107	7.276	.000(c)
ordinal	Spearman				
N de casos válidos		17			

- a Asumiendo la hipótesis alternativa.
- b Empleando el error típico asintótico basado en la hipótesis nula.
- c Basada en la aproximación normal.

Fuente: hoja de recolección de datos

Tabla No. 6

Saturación venosa central vrs. saturación venosa continua de pacientes críticamente enfermosa a las 6 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

			SV	Total	
			1	2	
SVCONT6a	1	Recuento	1	0	1
		% de SVCONT6a	100.0%	.0%	100.0%
		% de SVC6a	50.0%	.0%	5.9%
2	2	Recuento	1	15	16
		% de SVCONT6a	6.3%	93.8%	100.0%
		% de SVC6a	50.0%	100.0%	94.1%
Total		Recuento	2	15	17
		% de SVCONT6a	11.8%	88.2%	100.0%
		% de SVC6a	100.0%	100.0%	100.0%

Tabla No. 7

Prueba de *Xi* 2 comparando saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermosa a las 6 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

	Valor	Gl	Sig.	Sig.	Sig.
			asintótica	exacta	exacta
			(bilateral)	(bilateral)	(unilateral
)
Chi-cuadrado de	7.969(b)	1	.005		
Pearson					
Corrección por	1.496	1	.221		
continuidad(a)					
Razón de	4.834	1	.028		
verosimilitudes					
Estadístico exacto de				.04	.04
Fisher					
Asociación lineal por	7.500	1	.006		
lineal					
N de casos válidos	17				

a Calculado sólo para una tabla de 2x2.

b 3 casillas (75.0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es .12.

Tabla No. 8

Medidas simétrica comparando saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermosa a las 6 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

		Valor	Error típ.	Т	Sig.
			asint.(a)	aproximada	aproximad
				(b)	а
Intervalo por	R de Pearson	.685	.258	3.638	.002(c)
intervalo					
Ordinal por	Correlación de	.685	.258	3.638	.002(c)
ordinal	Spearman				
N de casos válidos		17			

a Asumiendo la hipótesis alternativa. b Empleando el error típico asintótico basado en la hipótesis nula. c Basada en la aproximación normal.

Fuente: hoja de recolección de datos

Tabla No. 9

Saturación venosa central vrs. saturación venosa continua de pacientes críticamente enfermosa a las 12 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

			SVC	Total	
			1	2	
SVCONT12a	1	Recuento	1	0	1
		% de SVCONT12a	100.0%	.0%	100.0%
		% de SVC12a	100.0%	.0%	5.9%
2	2	Recuento	0	16	16
		% de SVCONT12a	.0%	100.0%	100.0%
		% de SVC12a	.0%	100.0%	94.1%
Total		Recuento	1	16	17
		% de SVCONT12a	5.9%	94.1%	100.0%
		% de SVC12a	100.0%	100.0%	100.0%

Tabla No.10

Prueba de Xi 2 comparando saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermosa a las 6 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

	Valor	GI	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral
Chi-cuadrado de	16.000(1	.000		
Pearson	b)				
Corrección por	3.735	1	.053		
continuidad(a)					
Razón de	7.606	1	.005		
verosimilitudes					
Estadístico exacto de				.03	.03
Fisher					
Asociación lineal por	16.000	1	.000		
lineal					
N de casos válidos	17				

a Calculado sólo para una tabla de 2x2. b 3 casillas (75.0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es .06.

Fuente: hoja de recolección de datos

Tabla No. 11

Pruebas simetricas comparando saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermosa a las 12 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

		Valor	Error típ.
			asint.(a)
Intervalo por intervalo	R de Pearson	1.000	.000(b)
Ordinal por ordinal	Correlación de Spearman	1.000	.000(b)
N de casos válidos		17	

a Asumiendo la hipótesis alternativa. b Basada en la aproximación normal.

Tabla No. 12

Saturación venosa central vrs. saturación venosa continua de pacientes críticamente enfermosa a las 12 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

			SVC	Total	
			1.00	2.00	
SVCONT24a	1	Recuento	1	0	1
		% de SVCONT24a	100.0%	.0%	100.0%
		% de SVC24a	100.0%	.0%	5.9%
	2	Recuento	0	16	16
		% de SVCONT24a	.0%	100.0%	100.0%
		% de SVC24a	.0%	100.0%	94.1%
Total		Recuento	1	16	17
		% de SVCONT24a	5.9%	94.1%	100.0%
		% de SVC24a	100.0%	100.0%	100.0%

Tabla No. 13

Prueba de Xi 2 comparando saturación venosa central vrs saturación venosa continua en pacientes críticamente enfermosa a las 24 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

	Valor	Gl	Sig.	Sig.	Sig.
			asintótica	exacta	exacta
			(bilateral)	(bilateral)	(unilateral)
Chi-cuadrado de	17.000(b	1	.000		
Pearson)				
Corrección por	3.735	1	.053		
continuidad(a)					
Razón de	7.606	1	.006		
verosimilitudes					
Estadístico exacto de				.05	.05
Fisher					
Asociación lineal por	16.000	1	.000		
lineal					
N de casos válidos	17				

a Calculado sólo para una tabla de 2x2.b 3 casillas (75.0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es .06.

Fuente: hoja de recolección de datos

Tabla No. 14

Medidas simétricas comparando saturación venosa central vrs saturación venosa continúa en pacientes críticamente enfermosa a las 24 horas del ingreso a UTIA del hospital General de Enfermedad de julio 2008 a septiembre 2010

		Valor	Error típ.
			asint.(a)
Intervalo por intervalo	R de Pearson	1.000	.000(b)
Ordinal por ordinal	Correlación de Spearman	1.000	.000(b)
N de casos válidos		17	

a Asumiendo la hipótesis alternativa.

b Basada en la aproximación normal.

Abreviaturas

SvcO2 saturación venosa central de oxígeno

DO2/VO2 aporte/consumo de oxígeno

SVcontO2 saturación venosa continua

CC coeficiente de correlación

CP catéter pulmonar

GC gasto cardiaco

PERMISO DE AUTOR PARA COPIAR EL TRABAJO

El autor concede permiso para reproducir total o parcialmente y por cualquier medio la tesis titulada "COMPARACION DE SATURACION VENOSA CENTRAL DE OXIGENO: GASES VENOSOS VRS. MONITORO CONTINUO DE SATURACION" para propósitos de consulta académica. Sin embargo, quedan reservados los derechos de autos que confiere la ley, cuando sea cualquiera otro motivo diferente al que se señala lo que conduzca a su reproducción o comercialización total o parcial.